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An idea is inspired by 
the science of the brain



How computer works

Some useful 
computations

Inputs
Outputs



How brain works: neurons

Neuron is an electrically excitable cell that processes and 
transmits information by electrical and chemical signaling.

Input

Output



Mathematical model of a neuron 
(McCulloch and Pitt, 1943)
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Input “neurons”
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• An input vector x is the data given as one input to the 
processing “neuron” (corresponds to afferent neurons that 
transmit information to the brain).



How real neurons communicate

• The signal is transmitted to other 
neurons through synapses.

• The physical and neurochemical 
characteristics of each synapse 
determine the strength and polarity
of the new input signal. 

• This is where the brain is the most 
flexible: neuroplasticity.



Real neurons: signal summation

• Dendrite(s) receive an electric charge.

• The strengths of all the received charges are added 
together (spatial and temporal summation). 

• The aggregate value is then passed to the soma (cell body) 
to axon hillock.



Real neurons: activation threshold

• If the aggregate input is greater than the axon hillock's 
threshold value, then the neuron fires, and an output 
signal is transmitted down the axon. 



Real neurons: the output signal is 
constant
• The strength of the output is constant, regardless of 

whether the input was just above the threshold, or a 
hundred times as great. 

• This uniformity is critical in an analogue device such as a 
brain where small errors can snowball, and where error 
correction is more difficult.



Modeling brain with networks

• The complicated biological phenomena may be modeled by 
a very simple model: nodes model neurons and edges
model connections. 

• The input nodes each have a weight that they contribute to 
the neuron, if the input is active. This corresponds to the 
strength of a synaptic connection.
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Model: signal strength (weights)
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• Weights wi , are the weighted connections between input 
neurons and the processing neuron (these weights model the 
strength of synaptic connections in the brain). 



Model: processing “neuron” -
signal summation
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• The summation function IN sums all the signals from the input 
vector multiplied by weights, and feeds the result into 
activation function g.

Combination function: 
mostly weighted sum



Model: output “neuron”
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• The output y, shows the resulting action of processing neuron: neuron 

fires(1) or not(0).

• We can write y(x,W) to remind that the output depends on the inputs to 

the algorithm and the current set of weights of the network.

Weights vector (W)



Model: activation threshold
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• The activation function g(·) is a mathematical function that describes the 

firing of the neuron as a response to the weighted inputs.

• As in real brain, this is a threshold function: neuron either fires, or not.

Activation function must 
be a threshold function



Simple threshold: sign
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Activation function should 
be threshold function

The simplest threshold function: sign
g(x)=0 if x<=0
g(x)=1 if (x>0) (neuron fires)



Model: the goal – predict y
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• The model can be used to predict a target variable y given input vector x.

• Each input dimension (attribute) can be considered a separate input 

“neuron”

• Processing happens in the “axon” and based on the result the output 

neuron “fires” (or not)
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Model: multiple predictions
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• Conceptually there is no difference between input and output neurons

• So the same input vector can be used to activate multiple output 

“neurons”, using a different set of weights
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Let’s build some neural 
networks
Networks that know the meaning of lights



Predicting smiles
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• We record people’s reaction to lights into a table (dataset)

• Can we set up a single network which when presented with a 

combination of lights will correctly predict if a person will smile?

• Setting up the network means labeling the edges with correct weights

Dataset



Bias node
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• When we are presenting the network with combination [0, 0] - then the 
weights do not matter: the data vector [0,0] is ignored by the network

• To prevent this information loss, we add to the input a special bias node 
which always has a constant value, and we assign to it weight b



Network that predicts smiles
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Network that predicts smiles
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Checking correctness of predictions

y([0,0]) = -0.5 (-)
y([0,1]) = 1 - 0.5 = 0.5 (+)
y([1,0]) = 1 - 0.5 = 0.5 (+)
y([1,1]) = 2 - 0.5 = 1.5 (+)



Predicting two outputs
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There is no conceptual difference between input and output nodes



Predicting both smiles and stops
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Assigning sample weights for y1

We already know that this 
prediction is correct:
y1([0,0]) = -0.5 (-)
y1([0,1]) = 1 - 0.5 = 0.5 (+)
y1([1,0]) = 1 - 0.5 = 0.5 (+)
y1([1,1]) = 2 - 0.5 = 1.5 (+)



Predicting both smiles and stops
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We already know that this 
prediction is correct:
y1([0,0]) = -0.5 (-)
y1([0,1]) = 1 - 0.5 = 0.5 (+)
y1([1,0]) = 1 - 0.5 = 0.5 (+)
y1([1,1]) = 2 - 0.5 = 1.5 (+)

Assigning sample weights for y2



Predicting both smiles and stops
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y1([0,0]) = -0.5 (-)
y1([0,1]) = 1 - 0.5 = 0.5 (+)
y1([1,0]) = 1 - 0.5 = 0.5 (+)
y1([1,1]) = 2 - 0.5 = 1.5 (+)

Checking  y2

y2([0,0]) = -1.5 (-)
y2([0,1]) = 1 - 1.5 = -0.5 (-)
y2([1,0]) = 1 - 1.5 = -0.5 (-)
y2([1,1]) = 2 - 1.5 = 0.5 (+)



We have built the system that 
recognizes OR and AND
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y1([0,0]) = sign(-0.5) = 0
y1([0,1]) = sign(1 - 0.5) = 1
y1([1,0]) = sign(1 - 0.5) = 1
y1([1,1]) = sign(2 - 0.5) = 1

Apply sign function to the output

y2([0,0]) = sign(-1.5) = 0
y2([0,1]) = sign(1 - 1.5) = 0
y2([1,0]) = sign(1 - 1.5) = 0
y2([1,1]) = sign(2 - 1.5) = 1
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Truth table for OR

x1 x2 y1

0 0 0

0 1 0
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1 1 1
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Function g: sign
g(x)=0 if x<=0
g(x)=1 if (x>0)



Can we build a system that 
recognizes: x1 AND NOT x2?
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System that recognizes: 
x1 AND NOT x2
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System that recognizes: 
x1 AND NOT x2

x1

x2

1

-1

1 -0.5 x1 x2 y

0 0 0

0 1 0

1 0 1

1 1 0

Truth table for AND NOT

y([0,0]) = sign(-0.5) = 0
y([0,1]) = sign(0 - 1 - 0.5) = 0
y([1,0]) = sign(1 + 0 - 0.5) = 1
y([1,1]) = sign(1 - 1 - 0.5) = 0

y



How about: 
NOT (x1 AND x2)
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System that recognizes: 
NOT (x1 AND x2)
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Truth table for NOT AND

y([0,0]) = sign(1.5) = 1
y([0,1]) = sign(-1 + 1.5) = 1
y([1,0]) = sign(-1 + 1.5) = 1
y([1,1]) = sign(-2 + 1.5) = 0



Our network is able to recognize 
linearly-separable binary classes
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Why it works

• The network assumes that there is a linear 
correlation between the input vector x and the 
output y

• We just need to discover the equation of the 
separating line (hyperplane) y=wx +b, which 
expresses this linear correlation



Can machines learn the network 
parameters for a given problem 

automatically?

Yes, by looking at the labeled dataset (supervised learning)

Predict → Compare → Learn from errors



Neuron with learning capabilities: 
Perceptron (Rosenblatt, 1958) 
• The network can learn its own weights

• It is presented with a set of inputs and known outputs

• Originally the predicted output is different from the actual 
output by some error

• We adjust the connection weights to produce a smaller error

x y

Input 
neuron

Output 
neuron

w (unknown)

weight

Most basic Perceptron



Adjusting the weights with 
gradient descent: error

Objective error function - in this case: 

E = ½ (y - t)2

where y = w*x (predicted value), and t is the actual value of y, 
known from the labeled dataset

∂E/∂y = ½*2 (y - t) =y - t 

x y

w

The error depends on weight



E = ½ (y - t)2

y = w*x

∂E/∂y = y - t 

To determine how to change weight w take derivative of E at 
point w

𝚫 = ∂E/∂w = ∂E/∂y*∂y/∂w = (w*x - t)*x

If derivative  is positive (function on the rise) we need to 
decrease the weight, if it is negative - we need to increase the 
weight

Adjusting the weights with 
gradient descent: derivative

x y

w

The error depends on weight

Chain rule!



Adjusting the weights with 
gradient descent: delta rule

E = ½ (y - t)2

y = w*x

∂E/∂y = y - t 

𝚫 = ∂E/∂w = (w*x - t)*x

Delta rule: adjust weight w by 𝚫

w = w - ∂E/∂w = w - 𝚫 = w - (w*x - t)*x

x y

w

The error depends on weight



More input dimensions - more 
weights to adjust

The network transforms input feature vector into target using 
two weights

x1
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The principle is the same:

E = ½ (w1*x1 + w2*x2 - t)2

Which weight contributed more to the error?

Partial derivatives with respect to each weight:

∂E/∂w1 = (w1*x1 - t)*x1

∂E/∂w2 = (w2*x2 - t)*x2

Delta rules: update weights

w1 = w1 - ∂E/∂w1

w2 = w2 - ∂E/∂w2

E E



There is also a bias node, of course

Objective function: E = ½ (w1*x1 + w2*x2 + b - t)2

∂E/∂w1 = (w1*x1 - t)*x1

∂E/∂w2 = (w2*x2 - t)*x2

∂E/∂b = (b*c - t)*c

Delta rule:

w1 = w1 - ∂E/∂w1

w2 = w2 - ∂E/∂w2

b = b - ∂E/∂b

x1

x2

y

w1

w2

c
b

constant - not depending on the 
current input vector



Incorporating learning rate 𝜂
(eta)

w1 = w1 - 𝜂*∂E/∂w1

w2 = w2 - 𝜂*∂E/∂w2

b = b - 𝜂*∂E/∂b

where:

∂E/∂w1 = (w1*x1 - t)*x1

∂E/∂w2 = (w2*x2 - t)*x2

∂E/∂b = (cb - t)*c



Let’s try to build a perceptron 
that recognizes XOR
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Let’s try to build a perceptron 
that recognizes XOR

x1 x2 o
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Truth table for XOR
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We can’t!

This failure caused a major delay in developing the idea of ANN in the 60s



Experiment with basic perceptron
here

https://github.com/mgbarsky/demos_ml_neural_nets/blob/main/basic_perceptron.ipynb


Idea: 
express XOR through known solutions

x1 XOR x2 = (x1 OR x2) AND (NOT(x1 AND x2))
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NOT AND

x2

x1

AND



h1

Add more layers!

x1 x2 y

0 0 0

0 1 1
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Truth table for XOR
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h1([0,0]) = - 0.5 (-)                 → 0
h1([0,1]) = 1 - 0.5 = 0.5 (+)   → 1
h1([1,0]) = 1 - 0.5 = 0.5 (+)   → 1
h1([1,1]) = 2 - 0.5 = 1.5 (+)   → 1

h2([0,0]) = 1.5 (+) → 1
h2([0,1]) = -1 + 1.5 = 0.5 (+) → 1
h2([1,0]) = -1 + 1.5 = 0.5 (+) → 1
h2([1,1]) = -2 + 1.5 = -0.5 (-) → 0

y([0,0]) = (-) → 0
y([0,1]) = (+) → 1
y([1,0]) = (+) → 1
y([1,1]) = (-) → 0

x1 XOR x2 = (x1 OR x2) AND (NOT(x1 AND x2))

Input layer Hidden layer Output layer



h1

Importance of nonlinearity!

x1 x2 y

0 0 0

0 1 1

1 0 1
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Truth table for XOR
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h1([0,0]) = - 0.5 (-) → 0
h1([0,1]) = 1 - 0.5 = 0.5 (+)   → 1
h1([1,0]) = 1 - 0.5 = 0.5 (+)   → 1
h1([1,1]) = 2 - 0.5 = 1.5 (+)   → 1

h2([0,0]) = 1.5 (+) → 1
h2([0,1]) = -1 + 1.5 = 0.5 (+) → 1
h2([1,0]) = -1 + 1.5 = 0.5 (+) → 1
h2([1,1]) = -2 + 1.5 = -0.5 (-) → 0

y([0,0]) = (-) → 0
y([0,1]) = (+) → 1
y([1,0]) = (+) → 1
y([1,1]) = (-) → 0

Just combining linear separators would not work!
We have to add some sort of nonlinearity or 
sometimes-correlation between the layers

x1 XOR x2 = (x1 OR x2) AND (NOT(x1 AND x2))



Conclusion: neurons can be combined 
into multiple layers to create complex 
shapes from linear separation 
boundaries

x2

x1

XOR



Multi-layer Perceptron (MLP)

• Added: hidden nodes

• Organized nodes into layers. Edges are directed and carry 
weight

• No connections inside the layer!

Input layer Hidden layer 
1

Hidden layer 
2

Output layer



Multi-layer Perceptron: learning

Input layer Hidden layer 
1

Hidden layer 
2

Output layer

Objective of learning - did not change:  
determine the optimal values of weights to separate all 
labeled instances by a hyperplane



MLP: learning optimal weights

Because we need derivatives: instead of sign - use 
more complex nonlinear functions: sigmoidal functions
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Function that enables non-linearity or  
sometimes-correlation
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MLP: learning optimal weights

h1
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Non-linearity: sigmoid

w2

w6

Because we need derivatives: instead of sign - use 
more complex nonlinear functions: sigmoidal functions



Sigmoid gives a value in range 
from 0 to 1. 
Note: when IN  = 0,  f = 0.5
We consider all values >0 as 
positive predictions 

Alternatively can use tanh:

which has the  same shape as sigmoid 
but in range -1 to 1.

More recently - rectified linear units 
(ReLU):
This function is 0 for negative 
argument values, and some units will 
yield activations 0, making networks 
sparse. Moreover, the gradient is 
particularly simple—either 0 or 1. 

Non-linear activation functions

where 𝛃 is a positive constant (we generally use 2𝛃 = 1 
obtaining a standard logistic function)

Logistic function (sigmoid)



MLP learning algorithm

Training the MLP consists of two parts: 

• Working out what the outputs are for the given inputs 
and the current weights – Forward phase

• Updating the weights according to the error, which is a 
function of the difference between the outputs and the 
targets – Backward phase



Forward: prediction
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Forward phase: 
1. input-to-hidden layer: summation

h1 = w1*x1 + w2*x2 + b1

h2 = w3*x1 + w4*x2 + b2
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Forward phase: 
2. input-to-hidden layer: activation

h1 = w1*x1 + w2*x2 + b1

h2 = w3*x1 + w4*x2 + b2

g1 = σ(h1) 

g2 = σ(h2) 

h1

x1

x2

1
b1
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y
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Forward phase: 
3. hidden-to-output layer: prediction

h1 = w1*x1 + w2*x2 + b1

h2 = w3*x1 + w4*x2 + b2

g1 = σ(h1) 

g2 = σ(h2) 

y = g1*w5 + g2*w6 +b3
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1
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h2

w1
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w4
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Step-by-step example 
initialize weights at random

The input vector x = [1, 4], and the actual output t = 0.1

h1

x1

x2

1
b1= 0.5

h2

w1= 0.1

b2= 0.5

w3= 0.3

w4= 0.4

1

y

b3= 0.5

w5= 0.5w2= 0.2

w6= 0.6

g1

g2

1

4

t = 0.1



Step-by-step example 
1. input to hidden layer: summation

h1 = w1*x1 + w2*x2 + b1= 0.5 + 0.1*1 + 0.2*4 = 1.4

h2 = w3*x1 + w4*x2 + b2 = 0.5 + 0.3*1 + 0.4*4 = 2.4

h1

x1

x2

1
b1= 0.5

h2

w1= 0.1

b2= 0.5

w3= 0.3

w4= 0.4

1

y

b3= 0.5

w5= 0.5w2= 0.2

w6= 0.6

g1

g2

1

4

t = 0.1



Step-by-step example 
2. input to hidden layer: activation

h1 = 1.4

h2 = 2.4

g1 = σ(h1) = 0.8021838885585817481543 ≈ 0.80

g2 = σ(h2) = 0.9168273035060776293371 ≈ 0.92

h1

x1

x2

1
b1= 0.5

h2

w1= 0.1

b2= 0.5

w3= 0.3

w4= 0.4

1

y

b3= 0.5

w5= 0.5w2= 0.2

w6= 0.6

g1

g2

1

4

t = 0.1

https://keisan.casio.com/exec/system/15157249643325

https://keisan.casio.com/exec/system/15157249643325


Step-by-step example 
3. hidden-to-output layer: prediction

h1 = 1.4

h2 = 2.4

g1 = 0.80

g2 = 0.91

y = g1*w5 + g2*w6 +b3=0.80*0.5 + 0.92*0.6 + 0.5 ≈ 1.45
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1
b1= 0.5

h2

w1= 0.1

b2= 0.5

w3= 0.3

w4= 0.4

1

y
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4

t = 0.1



Step-by-step example 
compute error

h1 = 1.4

h2 = 2.4

g1 = 0.80

g2 = 0.91

y = 1.45

h1

x1

x2

1
b1= 0.5

h2

w1= 0.1

b2= 0.5

w3= 0.3

w4= 0.4

1

y

b3= 0.5

w5= 0.5w2= 0.2

w6= 0.6

g1

g2

1

4

t = 0.1

Predicted: 1.45

E = ½ (1.45 - 0.1)2 = 0.845

Error directly depends on the weights w5, w6, and b3

E = ½(0.80 *w5 + 0.92w6 + b3 - 0.1)2

We try to make it smaller by simultaneously adjusting 
w5, w6, and b3



Backward phase: 
4. output-to-hidden weight updates

E = ½(y - t)2      

y = g1*w5 + g2*w6 + b3

h1

x1

x2

1
b1

h2

w1

b2

w3

w4

1

y

b3

w5
w2

w6

g1

g2

To find how to update w5, w6, and b3 

Partial derivatives:

∂E/∂w5 = ∂E/∂y*∂y/∂w5=(y - t)*g1

∂E/∂w6 = (y - t)*g2

∂E/∂b3 = (y - t)*1



Step-by-step example 
4. output-to-hidden weight updates

h1 = 1.4

h2 = 2.4

g1 = 0.80

g2 = 0.91

y = 1.45

h1

x1

x2

1
b1= 0.5

h2

w1= 0.1

b2= 0.5

w3= 0.3

w4= 0.4

1

y

b3= 0.5

w5= 0.5w2= 0.2

w6= 0.6

g1

g2

1

4

t = 0.1

Predicted: 1.45

∂E/∂w5 = (y - t)*g1= (1.45 - 0.1)*0.80 = 1.08

∂E/∂w6 = (y - t)*g2= (1.45 - 0.1)*0.92 = 1.24

∂E/∂b3 = (y - t)*1  = 1.45 - 0.1 = 1.35

This tells us how much to update w5, w6, and b3 



Step-by-step example 
4. output-to-hidden weight updates

h1 = 1.4

h2 = 2.4

g1 = 0.80

g2 = 0.91

y = 1.45

h1

x1

x2

1
b1= 0.5

h2

w1= 0.1

b2= 0.5

w3= 0.3

w4= 0.4

1

y

b3= 0.5

w5= 0.5w2= 0.2

w6= 0.6

g1

g2

1

4

t = 0.1

Predicted: 1.45

∂E/∂w5 = 1.08

∂E/∂w6 = 1.24

∂E/∂b3 = 1.35

Update weights 𝛈=0.1:

w5= 0.5 - 1.08*0.1 = 0.39

w6 = 0.6 - 1.24*0.1 = 0.48

b3 = 0.5 - 1.35*0.1 = 0.37



Step-by-step example 
4. output-to-hidden weight updates

h1 = 1.4

h2 = 2.4

g1 = 0.80

g2 = 0.91

y = 1.45

h1

x1

x2

1
b1= 0.5

h2

w1= 0.1

b2= 0.5

w3= 0.3

w4= 0.4

1

y

b3= 0.5

w5= 0.5w2= 0.2

w6= 0.6

g1

g2

1

4

t = 0.1

Predicted: 1.45

∂E/∂w5 = 1.08

∂E/∂w6 = 1.24

∂E/∂b3 = 1.35

Update weights 𝛈=0.1:

w5= 0.5 - 1.08*0.1 = 0.39

w6 = 0.6 - 1.24*0.1 = 0.48

b3 = 0.5 - 1.35*0.1 = 0.37

Note that this step is exactly the same as in a single-layer perceptron!



Backward phase: 
5. hidden-to-output weight updates

h1

x1

x2

1
b1

h2

w1

b2

w3

w4

1

y

b3

w5
w2

w6

g1

g2

Error function E indirectly depends on w1, w2, w3, w4, b1, b2

To find the contribution of each variable: partial derivatives 

For example:

∂E/∂w1= ∂E/∂y*∂y/∂g1*∂g1/∂w1 Chain rule!



Backward phase: 
5. hidden-to-output weight updates

h1

x1

x2

1
b1

h2

w1

b2

w3

w4

1

y

b3

w5
w2

w6

g1

g2

Computing delta for w1

∂E/∂w1= ∂E/∂y*∂y/∂g1*∂g1/∂w1

E (y) = ½(y - t)2          →  ∂E/∂y = y - t

y (g1) = g1*w5 + g2*w6 + b3→ ∂y/∂g1 = w5

g1(w1) = σ(h1) = σ(w1*x1 + w2*x2 + b1) → ∂g1/∂w1 = g1*(1 - g1)* x1

𝜎′(𝑥)=𝜎(𝑥)(1−𝜎(𝑥))
sigmoid derivative



Backward phase: 
5. hidden-to-output weight updates

h1

x1

x2

1
b1

h2

w1

b2

w3

w4

1

y

b3

w5
w2

w6

g1

g2

Computing delta for w1

∂E/∂w1= ∂E/∂y*∂y/∂g1*∂g1/∂w1

𝚫 = ∂E/∂w1= (y - t)*w5*g1*(1 - g1)* x1

w1= w1 - 𝛈𝚫



Step-by-step example 
5. hidden-to-output weight update for w1

h1 = 1.4

h2 = 2.4

g1 = 0.80

g2 = 0.91

y = 1.45

h1

x1

x2

1
b1= 0.5

h2

w1= 0.1

b2= 0.5

w3= 0.3

w4= 0.4

1

y

b3= 0.5

w5= 0.5w2= 0.2

w6= 0.6

g1

g2

1

4

t = 0.1

Predicted: 1.45

𝚫 = ∂E/∂w1= (y - t)*w5*g1*(1 - g1)* x1

w1= w1 - 𝛈𝚫

𝚫 = (1.45 - 0.1)*0.5*0.80*0.20*1 = 0.108

Update w1using 𝛈=0.1:

w1= 0.1 - 0.1*0.108 = 0.0892 



Role of nonlinearity

• Somewhere inside the hidden layer we must have a mechanism which 
will ignore some correlations

• Otherwise the network will serve as a basic linear separator and be no 
better than a single-layer perceptron

You may also add non-
linearity to transform the 
output

But from hidden to output 
you must have non-linearity

h1

x1

x2

1
b1

h2

w1

b2

w3

w4

1

y

b3

w5
w2

w6

g1

g2



Experiment with multi-layer-perceptron
here

https://github.com/mgbarsky/demos_ml_neural_nets/blob/main/multi-layer-perceptron.ipynb


Multi-layer perceptron:
vanilla (basic) neural networks

Hidden layer 
1

Hidden layer 
2

Some useful 
computations

Inputs Outputs

Normal 
computing

Computing with 
MLP



1st layer draws linear 
boundaries

2nd layer combines the 
boundaries

3rd layer can generate 
arbitrarily complex 
boundaries

What do we gain from the extra layers



Very powerful model

• With sigmoidal activation function we can show that a 3-
layer net can approximate any function to arbitrary 
accuracy: property of Universal Approximation

• Proof by thinking of superposition of sigmoids

• Not practically useful as we might need arbitrarily large 
number of neurons - more of an existence proof

• Same is true for a 2-layer net providing function is 
continuous and from one finite dimensional space to 
another 



For any given constant ε  and continuous function 

h (x1,...,xm),  there  exists a three-layer ANN with the 
property that 

| h (x1,...,xm) - H(x1,...,xm) |< ε 

where H ( x1 , ... , xm )= Σ k 
i=1  ai f ( Σ m

j=1 wijxj + bi )

Universal Approximation 
Theorem



Applications of ANNs

• Credit card frauds

• Kinect – gesture recognition

• Facial recognition

• Self-driving cars

• …



Example: breast cancer diagnosis

• Dataset: 
https://archive.ics.uci.edu/ml/data
sets/Breast+Cancer+Wisconsin+(Di
agnostic)

• Features are computed from a 
digitized image of a fine needle 
aspirate (FNA) of a breast mass

• Diagnosing breast cancer from 
mammograms is a very hard non-
trivial task

Run and see how MLP learns to diagnose breast cancer

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)


Make computers as capable as 
humans?

Brain is a highly complex, non-linear, massively-parallel system

• Response of integrated response circuit:

1 nanosecond = 10-9sec

• Response of neuron:

1 millisecond = 10-3sec

The only advantage of the brain: massively parallel – 10 billion 
neurons with 60 trillions of connections working together



Artificial neural network is an 
abstract idea – media-independent

• To simulate the brain we could theoretically construct 
thousands of circuits working in parallel

• We can simulate them using a program that is executed 
on a conventional serial processor

• The solutions are theoretically equivalent 

• We can simulate the neural behavior by a virtual machine 
which is functionally identical to a real machine that 
currently is prohibitively complex and expensive to build
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