Primer: introduction to
Artificial Neural
Networks

Lecture 8.1

An idea is inspired by
the science of the brain

How computer works

Some useful
computations

Outputs
Inputs

How brain works: neurons

Neuron is an electrically excitable cell that processes and
transmits information by electrical and chemical signaling.

Auron hillock Output

‘ [Soma Ao
Input v | -

Dendrite Mucleus

T ertrunial buttons

)

schematic of hiological neuron.

Mathematical model of a neuron
(McCulloch and Pitt, 1943)

Input neurons (x)
o V4
X4 Neuron

T a=g(IN)

g \ Output neuron
> a >
S / Y
Wi

Input “neurons”

Input vector (x)

a=g(IN)

Output: Oor1l
> Y

A
L/

* An input vector x is the data given as one input to the
processing “neuron” (corresponds to afferent neurons that
transmit information to the brain).

How real neurons communicate

* The signal is transmitted to other
neurons through synapses.

* The physical and neurochemical
characteristics of each synapse
determine the strength and polari
of the new input signal.

Meuro-
transttters

e This is where the brain is the most
flexible: neuroplasticity.

Real neurons: sighal summation

e Dendrite(s) receive an electric charge.

* The strengths of all the received charges are added
together (spatial and temporal summation).

* The aggregate value is then passed to the soma (cell body)
to axon hillock.

Axon hillack

— e

Dendrite

Mucleus

T ertnitial buttons

)

=chematic of biclogical neuron.

Real neurons: activation threshold

* If the aggregate input is greater than the axon hillock's
threshold value, then the neuron fires, and an output
signal is transmitted down the axon.

Axon hillack

Dendrite Hucleus

Terminial buttons

)

mchematic of biological neuron.

Real neurons: the output signal is
constant

* The strength of the output is constant, regardless of

whether the input was just above the threshold, or a
hundred times as great.

* This uniformity is critical in an analogue device such as a

brain where small errors can snowball, and where error
correction is more difficult.

Modeling brain with networks

* The complicated biological phenomena may be modeled by
a very simple model: nodes model neurons and edges
model connections.

* The input nodes each have a weight that they contribute to
the neuron, if the input is active. This corresponds to the
strength of a synaptic connection.

Model: signal strength (weights)

Input vector (x)

a=g(IN)

\ Output: 0 or 1
a/ | y

* Weights w,, are the weighted connections between input
neurons and the processing neuron (these weights model the
strength of synaptic connections in the brain).

i IN=2 ., x;w,

Model: processing “neuron” -
signal summation

Input vector (x)
X, “Neuron”

a=g(IN)

\ Output: 0 or 1
Combination function:
Xi IN=2 ;W mostly weighted sum

* The summation function IN sums all the signals from the input
vector multiplied by weights, and feeds the result into
activation function g.

Model: output “neuron”

Weights vector (W)
X1 W, “Neuron”
———_a=g(IN)

\ Output: 0 or 1

* The output y, shows the resulting action of processing neuron: neuron
fires(1) or not(0).

Input vector (x)
>
NY

Xi IN=2 %W,

* We can write y(x, W) to remind that the output depends on the inputs to
the algorithm and the current set of weights of the network.

Model: activation threshold

Input vector (x)

a=g(IN)

\ Output: 0 or 1
a\\ > Y

Activation function must
X; IN=3;XW,; be a threshold function

* The activation function g(-) is a mathematical function that describes the
firing of the neuron as a response to the weighted inputs.

* Asin real brain, this is a threshold function: neuron either fires, or not.

Simple threshold: sign

Input vector (x)

a=g(IN)

\ Output: 0 or 1
a\\ > Y

Activation function should }

be threshold function

The simplest threshold function: sign
——————————— > g(X)=0 if x<=0
g(x)=1if (x>0) (neuron fires)

Model: the goal — predicty

Processing:
summation and threshold

a=g(IN)

\ Output “neuron”

The model can be used to predict a target variable y given input vector x.

Input “neurons”

Each input dimension (attribute) can be considered a separate input
“neuron”

Processing happens in the “axon” and based on the result the output
neuron “fires” (or not)

Model: multiple predictions

Input “neurons”

,SsuoJdnau ndinQ

* Conceptually there is no difference between input and output neurons
* So the same input vector can be used to activate multiple output
“neurons”, using a different set of weights

Let’s build some neural
networks

Networks that know the meaning of lights

Predicting smiles

Dataset
red orange | smile
Q Q neg
Q O pos
‘ Q pos
. O pos

orange

We record people’s reaction to lights into a table (dataset)
Can we set up a single network which when presented with a
combination of lights will correctly predict if a person will smile?

Setting up the network means labeling the edges with correct weights

Bias node

* When we are presenting the network with combination [0, 0] - then the
weights do not matter: the data vector [0,0] is ignored by the network

 To prevent this information loss, we add to the input a special bias node
which always has a constant value, and we assign to it weight b

orange smile

OO

O Q pos
‘ Q pos
‘ Q pos
X | X2 |Y
0o |0 |O
0 |1 |1
1 |0 |1
oranse 1 |1 |1

Network that predicts smiles

Assigning sample weights

red orange smile

O () | neg

Q O pos

‘ Q pos

‘ O pos
X1 [X2 |Y
O |0 (O
0 1 1
orange 1 0 1
1 1 1

Network that predicts smiles

Checking correctness of predictions

red orange smile

O () | neg

Q O pos

‘ Q pos

‘ Q pos
Xp | X |Y
O |0 |O
0 1 1
R T MENE
v([1,0]) =1-0.5=0.5 (+) 1 |1 |1

v([1,1]) =2-0.5=1.5 (+)

Predicting two outputs

red orange | smile
O | O |re
O O pos
‘ O pos
‘ O pos

re orange | stop

O

O neg

orange ‘ O neg
‘ O posS

neg

OO~

There is no conceptual difference between input and output nodes

Assigning sample weights fory,

We already know that this

Predicting both smiles and stops

orange

prediction is correct:

A

A
A
A

[0,0]) =-0.5(-)

[0,1])=1-0.5=0.5 (+)
[1,0])=1-0.5=0.5 (+)
[1,1])=2-0.5=1.5 (+)

red

00O

re

00 OO "

orange

O

O
O
O

orange

@O® O

smile
neg
pos
pos

pos

stop
neg
neg
neg

poOS

Assigning sample weights for vy,

We already know that this

Predicting both smiles and stops

orange

prediction is correct:

A

A
A
A

[0,0]) =-0.5(-)

[0,1])=1-0.5=0.5 (+)
[1,0])=1-0.5=0.5 (+)
[1,1])=2-0.5=1.5 (+)

red

00O

re

00 OO "

orange

O

O
O
O

orange

@O® O

smile
neg
pos
pos

pos

stop
neg
neg
neg

poOS

Predicting both smiles and stops

red orange | smile

O s
O pos
O pos
O pos

Checking v,

00O

red orange stop

O O e

O O e

orange ‘ O neg

@ O

y4([0,0]) =-0.5 (-) y,([0,0]) =-1.5 (-)

y4([0,1]) =1-0.5=0.5 (+) ¥,([0,1])=1-1.5=-0.5(-)
y,([1,0])=1-0.5=0.5 (+) y,([1,0])=1-1.5=-0.5(-)
y4([1,1]) =2-0.5=1.5 (+) Y,([1,1])=2-1.5=0.5 (+)

We have built the system that
recognizes OR and AND

Apply sign function to the output Truth table for OR

X1 [X2 | V1
)) 0 0 0
Function g: sign
g(x)=0 if x<=0 o |1 |1
g(x)=1if (x>0) 1 |0 1
| A EE
] Truth table for AND

X1 | X [Y1

y1([0,0]) = sign(-0.5) =0 Yal
y,([0,1]) =sign(1-0.5)=1 A
y4([1,0]) = sign(1-0.5) =1 Y,([1,0]) = sign(1-1.5)=0
Vs Yal

[0,0]) =sign(-1.5) =0
[0,1]) =sign(1-1.5)=0

R |]|]O|O
R | OO
| O|O| O

[1,1]) =sign(2-0.5)=1 [1,1]) =sign(2-1.5)=1

Can we build a system that
recognizes: x, AND NOT x,?

Truth table for AND NOT

Xp (X |Y

R | =]|]O| O
R O(=R|O
oO|lr|]O|O0O

System that recognizes:
X, AND NOT x,

Truth table for AND NOT

Xp (X |Y

R | =]|]O| O
R O(=R|O
oO|lr|]O|O0O

System that recognizes:
X, AND NOT x,

Truth table for AND NOT

Xp (X |Y

R | =]|]O| O
R O(=R|O
oO|lr|]O|O0O

y([0,0]) = sign
y([0,1]) = sign
y([1,0]) = sign
y([1,1]) = sign

-0.5)=0

0-1-0.5)=0
1+0-0.5)=1
1-1-0.5)=0

——~ e~~~

How about:
NOT (x, AND x,)

Truth table for NOT AND

Xp | % |Y
O (O 1
0 1 1
1 0 1
1 1 0

System that recognizes:
NOT (x, AND x,)

Truth table for NOT AND

Xp | X2 |Y
0O (O 1
0 1 1
1 0 1
1 1 0

y([0,0]) = sign(1.5) =1

y([0,1]) =sign(-1+1.5)=1
y([1,0]) =sign(-1+1.5)=1
y([1,1]) =sign(-2+1.5) =0

AND

OR

Our network is able to recognize

linearly-separable binary classes

O,

NOT AND

AND NOT

X5
D O
AN
AN
AN
AN
o . o
Xq
Xy
D O
/7
7
7
N _ X
G— .

Why it works

The network assumes that there is a linear
correlation between the input vector x and the
output y

We just need to discover the equation of the
separating line (hyperplane) y=wx +b, which
expresses this linear correlation

Can machines learn the network
parameters for a given problem
automatically?

Yes, by looking at the labeled dataset (

Predict > Compare - Learn from errors

Neuron with learning capabilities:
Perceptron (Rosenblatt, 1958)

* The network can learn its own weights
* |t is presented with a set of inputs and known outputs

* Originally the predicted output is different from the actual
output by some error

* We adjust the connection weights to produce a smaller error

w (unknown)
X weight Y

Input Output
neuron neuron

Most basic Perceptron

Adjusting the weights with
gradient descent: error

llllllll

A
W Weight | Gradient
Cost) \ II’/
’
> 4
X s y Incremental]
Step \\ f
1
1]
']
i
/

. / ,’
Objective error function - in this case: / P ZA
— 1 2 Weight »
E = /2 (y) t) The error depends on weight

where y = w*x (predicted value), and t is the actual value of y,
known from the labeled dataset

OE/oy =%*2 (y-t) =y -t

Adjusting the weights with
gradient descent: derivative

llllllll

W Weight | Gradient
Cost) \ II’/
’
> 4
X » y Incremental]
Step \\ f
1
1]
i

E - % (y = t)z / k(/ I Minimum Cost
Derivative of Cost

-_— E 3 Weight
y = WX The error depends on weight
OE/dy =y -t
To determine how to change weight w take derivative of E at
pOint W {f_: _dz dy
de dy dz
A = OE/0w = OE/dy*dy/0w = (W*x - t)*x Chaiﬁ; rule!

If derivative is positive (function on the rise) we need to
decrease the weight, if it is negative - we need to increase the
weight

Adjusting the weights with
gradient descent: delta rule

llllllll
lllllllll

W Weight !
Cost g \ I’I/
!
> I
X o y Incremental !
o \ f
st

E = % (y - .t)2 DenéveofCos! //
— E 3 Vet

y=Ww=X The error depends on weight

OE/oy=y-t

A = 0E/0w = (W*x - t)*x

Delta rule: adjust weight w by A

w=w-0E/ow=w-A=w-(w*x -t)*x

More input dimensions - more
weights to adjust

The network transforms input feature vector into target using
two weights

The principle is the same:

Which weight contributed more to the error?
Partial derivatives with respect to each weight:

OE/ow, = (w;*x, - t)*x,

—_ * *
OE/0w, = (W, *X, - 1)*x, 6E aE)
/<au'1 ’ dway
(0) (0)
L ,'2

Delta rules: update weights \ B ()
Wl = Wl - dE/aW]_ ".\ gi'raec;t(ie%rt‘l()’;scent

w, =w, - 0E/dw, S

There is also a bias node, of course

Objective function: E = % (w;*x; + w,*x, + b - t)?
OE/0w, = (w,*x, - t)*x4

a E/awz (W2 X2 t) *Xz constant - not depending on the

aE/ab = (b*c _ t)* G current input vector

)
(%)

Delta rule:

w, =w, - 0E/0w,
W, = w, - OE/dw,
b=b-0E/db

Incorporating learning rate
(eta)

W, =w, - 7*0E/dw,
W, =W, - 71*0E/0w,
b=b-17*dE/db

where:

OE/0w, = (w;*x, - t)*x,
OE/0w, = (w,*x, - t)*x,
0E/db = (cb - t)*c

Let’s try to build a perceptron
that recognizes XOR

Truth table for XOR

X, |X |0

R | =,]O|O

O(FR, |,]|]O

= 1 O |kF—»r|O

Let’s try to build a perceptron
that recognizes XOR

Truth table for XOR
X; |%X, |0
0 0 0
0 |1 |1
1 |0 |1
1 |1 |o
Xy

N
We can’t! G ®

This failure caused a major delay in developing the idea of ANN in the 60s

X4q

Experiment with basic perceptron
here

https://github.com/mgbarsky/demos_ml_neural_nets/blob/main/basic_perceptron.ipynb

ldea:
express XOR through known solutions

X; XOR x, = (x; OR x,) AND (NOT(x,; AND x,))

OR A NOTAND
X, X2
o ® 0, O
AN
\\ Ng
N
\\ X1 \\ Xy
CRERN .o

> 35 5 T

1
1
1
1

— —, — —

Add more layers!
X; XOR X, = (x; OR x,) AND (NOT(x; AND x,))

[0,0]
[0,1]
[1,0]
[1,1]

Input layer

—— — — —

NHH

0.5(-)

-05=05(+) >
-05=05(+) >
-05=15(+) =

Hidden layer

h,([0,0]) = 1.5 (+)
h,([0,1]) = -1 + 1.5 = 0.5 (+)
h,([1,0]) = -1 + 1.5 = 0.5 (+)
h,([1,1]) = -2 + 1.5=-0.5 (-)

-1.5

Output layer

-1
-1
-1
-0

Truth table for XOR

Xp | X |Y
O |0 |O
0 1 1
1 0 1
1 1 0

y([0,0))=(-) >0
y([0,1])=(+)>1
y([1,0)) = (+)>1
y([1,1)=() >0

Importance of nonlinearity!

X, XOR x, = (x; OR x,) AND (NOT(x, AND x,))

h,([0,0]
h,([0,1]
h,([1,0]
h,([1,1]

—— — — —

N R

-0

5
0.
0.
0.

(-) -0
5=05(+) >1
5=05(+) >1
5=15(+) >1

h,([0,0]) = 1.5 (+)

h,([0,1]) =-1+ 1.5=0.5 (+)
h,([1,0]) =-1+1.5=0.5 (+)
h,([1,1]) =-2 +1.5=-0.5 (-)

-1
-1
-1
-0

Truth table for XOR

X, [% |y
O (0 (O
o (1 |1
1 |0 |1
1 1 |0

y([0,0))=(-) >0
y([0,1])=(+)>1
y([1,0)) = (+)>1
y([1,1)=() >0

Conclusion: neurons can be combined
into multiple layers to create complex
shapes from linear separation
boundaries

XOR

o . S E—— E— O

Multi-layer Perceptron (MLP)

 Added: hidden nodes

* Organized nodes into layers. Edges are directed and carry
weight

* No connections inside the layer!

Input layer Hidden layer Hidden layer Output layer
1 2

Multi-layer Perceptron: learning

Objective of learning - did not change:
determine the optimal values of weights to separate all
labeled instances by a hyperplane

Input layer Hidden layer Hidden layer Output layer
1 2

MLP: learning optimal weights

Function that enables non-linearity or
sometimes-correlation

Because we need derivatives: instead of sign - use
more complex nonlinear functions: sigmoidal functions

MLP: learning optimal weights

Because we need derivatives: instead of sign - use
more complex nonlinear functions: sigmoidal functions

Non-linear activation functions

Logistic function (sigmoid)

B 1
14 e28m°

g(h)

0.5

-6 -4 -2 0 2 4

Sigmoid gives a value in range
from O to 1.

Note: whenIN =0, f=0.5
We consider all values >0 as
positive predictions

where B is a positive constant (we generally use 23 = 1
obtaining a standard logistic function)

Alternatively can use tanh:
sinh x e’ —e ” et — 1
tanhx = = — — =
coshr e fe @ elr 41

which has the same shape as sigmoid
but in range -1 to 1.

More recently - rectified linear units
(ReLU): f(z) =z~ = max(0,z)

This function is O for negative
argument values, and some units will
yield activations 0, making networks
sparse. Moreover, the gradient is
particularly simple—either 0 or 1.

MLP learning algorithm

Training the MLP consists of two parts:

* Working out what the outputs are for the given inputs
and the current weights — Forward phase

* Updating the weights according to the error, which is a
function of the difference between the outputs and the
targets — Backward phase

Forward: prediction

Forward phase:
1. input-to-hidden layer: summation

— k 3
h; = w;*x; + w,*x, + b,

- * *
h, = wy*x, + W, *x, + b,

Forward phase:
2. input-to-hidden layer: activation

hy =w;*x; + w,*x, + b,
h, = wy*x, + w, *x, + b,
g, = o(hy)
g, = o(h,)

Forward phase:
3. layer: prediction

— k k
h, =w *x; + w,*x, + b,
— k k
h, = wy;*x; + w,*x, + b,
g1=0(h1)

g, = G(hz)
Y =8, *Ws + 8,%Wg +b,

Step-by-step example
initialize weights at random

The input vector x = [1, 4], and the actual output t =0.1

Step-by-step example
1. input to hidden layer: summation

0.1

<
-+
]

h; =w;*x; + w,*x, +b,=0.5+0.1*1 +0.2*4=1.4
h, =w;*x; +w,*x, +b,=0.5+0.3*1+0.4%4 =24

Step-by-step example
2. input to hidden layer: activation

h,=1.4

h,=2.4

g, = o(h,) = 0.8021838885585817481543 = 0.80
g, = o(h,) = 0.9168273035060776293371 = 0.92

https://keisan.casio.com/exec/system/15157249643325

https://keisan.casio.com/exec/system/15157249643325

Step-by-step example
3. layer: prediction

h,=1.4

h,=2.4

g, = 0.80

g,=0.91

y = g,*W; + g,*w, +b,=0.80*0.5 + 0.92*0.6 + 0.5 = 1.45

Step-by-step example
compute error

h;=14
h,=2.4
g, =0.80
g,=0.91
y=1.45

/ . y t=0.1
Predicted: 1.45

E=7%(1.45-0.1)>=0.845
Error directly depends on the weights we, w,, and b,
E =7(0.80 *w. + 0.92w, + b, - 0.1)?

We try to make it smaller by simultaneously adjusting
We, W, and by

Backward phase:
4. weight updates

@/ hzfgz

E = %4(y - t)2 To find how to update wg, w,, and b;

y =g, W, + g,*W, + b, Partial derivatives:
0E/0ow. = OE/dy*dy/ow.=(y - t)*g,
(3E/(3W6 =(y-t)*g,
0E/ob, = (y - t)*1

Step-by-step example
4. weight updates

Y t=0.1
Predicted: 1.45
hzfgz
4
h;=1.4 dE/Ow = (y - t)*g,= (1.45 - 0.1)*0.80 = 1.08
h,=2.4 dE/Ow, = (y - t)*g,= (1.45 - 0.1)*0.92 = 1.24
g, =0.80 OE/db, = (y-t)*1 =1.45-0.1=1.35

g,=0.91

y=145 This tells us how much to update w, w,, and b,

Step-by-step example

4.

h,=1.4
h,=2.4
g, =0.80
g,=091
y=1.45

hzfgz
4
JE/dw, = 1.08
OE/Ow, =124 ——
OE/db, = 1.35

weight updates

Y t=0.1
Predicted: 1.45

Update weights n=0.1:
w.=0.5-1.08*%0.1=0.39
w, =0.6-1.24*0.1=0.48
b; =0.5-1.35*%0.1=0.37

Step-by-step example
4. weight updates

/ ' Y t=0.1
Predicted: 1.45
hzfgz
4

h;=14 Update weights n=0.1:

h,=2.4 OE/0w; = 1.08 w.= 0.5 - 1.08*0.1 = 0.39

g, =0.80 OE/Owg=1.24 —> w, =0.6-1.24*0.1=0.48
g,=0.91 0E/db, = 1.35 b,=0.5-1.35%0.1=0.37

y = 1.45 Note that this step is exactly the same as in a single-layer perceptron!

Backward phase:
5. hidden-to-output weight updates

Error function E indirectly depends on w,, w,, w;, w,, b,, b,
To find the contribution of each variable: partial derivatives

For example: dz _dz dy
dx dy dz

dE/ow,= 0E/dy*dy/dg,*0g,/ow, Chain rule!

Backward phase:
5. hidden-to-output weight updates

o'(x)=0(x)(1-0(x))
sigmoid derivative

OE/0ow,= 0E/dy*0dy/0g,*0g,/ow,
E(y) =%l(y - t)? x4 OE/dy =y -t /

Yy (81) = 81*W5 + gz*We + by dy/ag1 = Ws

g,(w,) =o(h,) = o(w, *x; + w,*x, + b;) > 0g,/0w,;=g,*(1-g,)*x,

Computing delta for w,

Backward phase:
5. hidden-to-output weight updates

Computing delta for w,
OE/0ow,= 0E/dy*0dy/0g,*0g,/ow,
A =0E/0w,=(y-t)*w.*g,*(1-g,)* x4

w,=w,; -nNA

Step-by-step example
5. hidden-to-output weight update for w,

h,=1.4
h,=2.4
g, =0.80
g,=0.91
y=1.45

Y t=0.1

Predicted: 1.45
@/ h, /%,
4

A =0E/dw, = (y - t)*w:*g,*(1-g,)* x;
w,;=w,-NA
A=(1.45-0.1)*0.5*0.80*0.20*1 =0.108
Update w,using n=0.1:
w,=0.1-0.1*0.108 = 0.0892

Role of nonlinearity

But from hidden to output
you must have non-linearity

You may also add non-
yfk_ linearity to transform the
output

* Somewhere inside the hidden layer we must have a mechanism which
will ignore some correlations

* Otherwise the network will serve as a basic linear separator and be no
better than a single-layer perceptron

Experiment with multi-layer-perceptron
here

https://github.com/mgbarsky/demos_ml_neural_nets/blob/main/multi-layer-perceptron.ipynb

Multi-layer perceptron:
vanilla (basic) neural networks

Some useful
computations

Hidden layer Hidden layer
Inputs 1 2 Outputs

MLP

What do we gain from the extra layers

e

(2 (2
N\

1st layer draws linear

boundaries
2nd layer combines the

boundaries

3rd layer can generate
arbitrarily complex
boundaries

Very powerful model

With sigmoidal activation function we can show that a 3-
layer net can approximate any function to arbitrary
accuracy: property of Universal Approximation

* Proof by thinking of superposition of sigmoids

* Not practically useful as we might need arbitrarily large
number of neurons - more of an existence proof

e Same is true for a 2-layer net providing function is
continuous and from one finite dimensional space to
another

Universal Approximation
Theorem

For any given constant € and continuous function

h (x,,...,X,,), there exists a three-layer ANN with the
property that

| h(x,,...,.x.) - H(x,...,x,) [< €

where H (x,, ..., X,)=2 ¥._, a. f(zmj=1 W;X; + b;)

Applications of ANNs

Credit card frauds
* Kinect — gesture recognition

* Facial recognition

Self-driving cars

Example: breast cancer diagnosis

* Dataset:
https://archive.ics.uci.edu/ml/data
sets/Breast+Cancer+Wisconsin+(Di
agnostic)

* Features are computed from a
digitized image of a fine needle
aspirate (FNA) of a breast mass

* Diagnosing breast cancer from
mammograms is a very hard non-
trivial task

Run and see how MLP learns to diagnose breast cancer

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

Make computers as capable as
humans?

Brain is a highly complex, non-linear, massively-parallel system
Response of integrated response circuit:
1 nanosecond = 10 sec
Response of neuron:

1 millisecond = 103sec

The only advantage of the brain: massively parallel — 10 billion
neurons with 60 trillions of connections working together

Artificial neural network is an
abstract idea — media-independent

To simulate the brain we could theoretically construct
thousands of circuits working in parallel

We can simulate them using a program that is executed
on a conventional serial processor

The solutions are theoretically equivalent

We can simulate the neural behavior by a virtual machine
which is functionally identical to a real machine that
currently is prohibitively complex and expensive to build

	Slide 1: Primer: introduction to Artificial Neural Networks
	Slide 2: An idea is inspired by the science of the brain
	Slide 3: How computer works
	Slide 4: How brain works: neurons
	Slide 5: Mathematical model of a neuron (McCulloch and Pitt, 1943)
	Slide 6: Input “neurons”
	Slide 7: How real neurons communicate
	Slide 8: Real neurons: signal summation
	Slide 9: Real neurons: activation threshold
	Slide 10: Real neurons: the output signal is constant
	Slide 11: Modeling brain with networks
	Slide 12: Model: signal strength (weights)
	Slide 13: Model: processing “neuron” - signal summation
	Slide 14: Model: output “neuron”
	Slide 15: Model: activation threshold
	Slide 16: Simple threshold: sign
	Slide 17: Model: the goal – predict y
	Slide 18: Model: multiple predictions
	Slide 19: Let’s build some neural networks
	Slide 20: Predicting smiles
	Slide 21: Bias node
	Slide 22: Network that predicts smiles
	Slide 23: Network that predicts smiles
	Slide 24: Predicting two outputs
	Slide 25: Predicting both smiles and stops
	Slide 26: Predicting both smiles and stops
	Slide 27: Predicting both smiles and stops
	Slide 28: We have built the system that recognizes OR and AND
	Slide 29: Can we build a system that recognizes: x1 AND NOT x2?
	Slide 30: System that recognizes: x1 AND NOT x2
	Slide 31: System that recognizes: x1 AND NOT x2
	Slide 32: How about: NOT (x1 AND x2)
	Slide 33: System that recognizes: NOT (x1 AND x2)
	Slide 34: Our network is able to recognize linearly-separable binary classes
	Slide 35: Why it works
	Slide 36: Can machines learn the network parameters for a given problem automatically?
	Slide 37: Neuron with learning capabilities: Perceptron (Rosenblatt, 1958)
	Slide 38: Adjusting the weights with gradient descent: error
	Slide 39: Adjusting the weights with gradient descent: derivative
	Slide 40: Adjusting the weights with gradient descent: delta rule
	Slide 41: More input dimensions - more weights to adjust
	Slide 42: There is also a bias node, of course
	Slide 43: Incorporating learning rate 𝜂 (eta)
	Slide 44: Let’s try to build a perceptron that recognizes XOR
	Slide 45: Let’s try to build a perceptron that recognizes XOR
	Slide 46: Experiment with basic perceptron here
	Slide 47: Idea: express XOR through known solutions
	Slide 48: Add more layers!
	Slide 49: Importance of nonlinearity!
	Slide 50: Conclusion: neurons can be combined into multiple layers to create complex shapes from linear separation boundaries
	Slide 51: Multi-layer Perceptron (MLP)
	Slide 52: Multi-layer Perceptron: learning
	Slide 53: MLP: learning optimal weights
	Slide 54: MLP: learning optimal weights
	Slide 55: Non-linear activation functions
	Slide 56: MLP learning algorithm
	Slide 57: Forward: prediction
	Slide 58: Forward phase: 1. input-to-hidden layer: summation
	Slide 59: Forward phase: 2. input-to-hidden layer: activation
	Slide 60: Forward phase: 3. hidden-to-output layer: prediction
	Slide 61: Step-by-step example initialize weights at random
	Slide 62: Step-by-step example 1. input to hidden layer: summation
	Slide 63: Step-by-step example 2. input to hidden layer: activation
	Slide 64: Step-by-step example 3. hidden-to-output layer: prediction
	Slide 65: Step-by-step example compute error
	Slide 66: Backward phase: 4. output-to-hidden weight updates
	Slide 67: Step-by-step example 4. output-to-hidden weight updates
	Slide 68: Step-by-step example 4. output-to-hidden weight updates
	Slide 69: Step-by-step example 4. output-to-hidden weight updates
	Slide 70: Backward phase: 5. hidden-to-output weight updates
	Slide 71: Backward phase: 5. hidden-to-output weight updates
	Slide 72: Backward phase: 5. hidden-to-output weight updates
	Slide 73: Step-by-step example 5. hidden-to-output weight update for w1
	Slide 74: Role of nonlinearity
	Slide 75: Experiment with multi-layer-perceptron here
	Slide 76: Multi-layer perceptron: vanilla (basic) neural networks
	Slide 77: What do we gain from the extra layers
	Slide 78: Very powerful model
	Slide 79: Universal Approximation Theorem
	Slide 80: Applications of ANNs
	Slide 81: Example: breast cancer diagnosis
	Slide 82: Make computers as capable as humans?
	Slide 83: Artificial neural network is an abstract idea – media-independent

